Platforms Convergence and Open APIs: information about some recent activities in AIOTI WG03 HLA group and ITU-T IoT and SC&C related initiatives

Marco Carugi
ITU-T SG20 and AIOTI WG03
Senior Consultant
marco.carugi@gmail.com
From vertical to horizontal platforms

The situation of technology separation among IoT application domains produces market separation

VERTICAL MODEL [per silo integration]

Platform configured per vertical application (application domain)

HORIZONTAL MODEL [platform based integration]

Horizontal platform supporting multiple vertical apps (with common components and application-specific components)

Deployment reality: different (domain) platforms will continue to co-exist and need to interoperate

Per silo integration does not scale and limits evolution possibilities

Platform based integration with the key role of open standards and open source
The IoT Reference Model defined by ITU-T

Capability view of the IoT infrastructure

- Application capabilities
- Service Support and Application Support capabilities
- Network capabilities
- Device and Gateway capabilities
- Cross-layer Management Capabilities
- Cross-layer Security Capabilities

Source: ITU-T Y.2060 /Y.4000 “Overview of the Internet of things”
The AIOTI High Level Architecture (HLA) aiming to promote convergence and harmonization across the different IoT architecture standardization efforts.

Source: AIOTI WG03 (IoT Standardisation) - HLA Rel. 3.0

- App Entity 1
- App Entity 2
- App Entity 3

Application layer

IoT Entity

Thing representation (incl. semantic metadata) Identification, Analytics, Semantics

Location discovery Determinism Security Device mgmt.

IoT layer

Networks QoS, Determinism location, Network security, protection.

Network layer

1. Commands/data structure
2. Interfaces to access IoT capabilities
3. Data plane
4. Network control plane interfaces (location, QoS, etc)
5. Horizontal services

ITU-T IoT Reference Model mapping to the AIOTI HLA

A number of IoT Reference Architectures across SDOs, projects and market deployments
Smart Cities as super application domain of the IoT

Integration of multiple verticals

The brain of the city

The senses of the city

Smart City Platform

Still a number of technical challenges, incl. interoperability, scalability, dynamicity, security and privacy

Data collection, analysis, knowledge, planning, action

City data sources

Social networks
Mobile applications
WorldWideWeb
Legacy Devices
IoT Devices

Source: Dr. Levent Gürgen
IoT Virtualisation: the microservices-based architectural approach

An example of microservices-based functional architecture for IoT Virtualisation

Mapping of microservices-based functional architecture on AIOTI HLA

Source: AIOTI High Level Architecture R4.0
A key step in front of the IoT standardization work plan: Big Data-IoT architectural integration
A foundational ITU-T Recommendation on Big Data in IoT:
ITU-T Y.4114 “Specific requirements and capabilities of the IoT for Big Data”

Specific requirements and capabilities the IoT is expected to support to address the challenges related to Big Data

The IoT data roles identified in Y.4114
[the key roles relevant in an IoT deployment from a data operation perspective]

Abstract representation of IoT data operations and related data flows (diverse concrete IoT deployments do not imply unique logical sequencing of IoT data operations)

ITU-T FG-DPM to build on it (e.g. “Data sharing” as critical additional data operation)
Description of the IoT data roles identified in Y.4114

- **IoT Data provider**: it collects data from things, injects data processed within the IoT system as well as data from external sources, and provides them via the IoT Data carrier to the IoT Data consumer (optionally, the applications provided by the IoT Data application provider may execute relevant data operations with the support of the IoT Data framework provider).

- **IoT Data application provider**: it provides applications related to the execution of IoT data operations (e.g. applications for data analysis, data pre-processing, data visualization and data query).

 NOTE - The applications provided by the IoT Data application provider can interact with the infrastructure (e.g. storage cloud) provided by the IoT Data framework provider through the IoT Data carrier or run on the infrastructure (e.g. scalable distributed computing platforms) provided by the IoT Data framework provider.

- **IoT Data framework provider**: it provides general IoT data processing capabilities and related infrastructure (e.g. storage and computing resources, data processing run time environment) as required by IoT Data provider, IoT Data carrier, IoT Data application provider and IoT Data consumer for the support of data operations execution.

- **IoT Data consumer**: it consumes IoT data. Usage of the consumed data depends on the application purposes.

- **IoT Data carrier**: it carries data among IoT Data provider, IoT Data framework provider, IoT Data application provider and IoT Data consumer.

 NOTE - An actor of a concrete IoT deployment can play multiple roles. As an example, an actor executing data analysis plays the role of IoT Data application provider, but it also plays the role of IoT Data provider when it sends the results of this data analysis to other actors.

Y.4114 describes also key possible mappings from IoT business roles [Y.2060] to IoT data roles, as well as an example of deployment scenarios with respect to IoT data roles (Appendix).
Cross-domain Data Sharing – example of context information management

Cross-domain uses cases require access to information from different domains that is normally held in separate silos - e.g. sharing of context information

Different sources of context information
• Existing systems, users (through mobile apps), sensors/IoT devices

Standard specifications are needed for context information management
• To ensure vendor neutrality for users such as Cities
• To reduce technological barriers to development/deployment, to enable innovative services
Data sharing via a cross-domain Context Information Layer (ETSI ISG CIM)

An info-exchange layer on top of IoT platforms - especially targeting Smart City applications

ETSI ISG CIM goals

- information-centric, joining verticals, interoperable
- To compare candidate protocols for cross-domain info exchange, potential enhancements
- To identify data exchange API
- To develop example data models

Collaboration with SDOs (ITU-T FG-DPM, oneM2M, W3C ...) & open-source implementations
Potential of ML for network design, operation and optimization
- coping with massively increased complexity
- enhancing network operations’ efficiency and robustness
- increasing network self-organization feasibility
- providing reliable predictions

As well as potential of ML to enable new advanced applications

But a number of challenges need to be addressed [beyond trust]
- how to deal with stringent requirements of many applications (latency)
- how to ensure robust ML given small data sets and under latency constraints
- how to deal with distribution of data at different locations and diverse data formats
- usage of distributed learning to have efficient usage of scarce resources
- how to deal with (wireless) channel noise, dynamicity and unreliability
- how to ensure good tracking capabilities
- how to exploit context info and expert knowledge (hybrid ML approaches)

Source: discussion in initial meetings of ITU-T FG-ML5G

ITU-T FG on “Machine Learning for Future Networks including 5G” (FG-ML5G)
- created in Nov 2017, SG13 as Parent ITU-T Study Group
- a number of challenges and opportunities common to the IoT
ITU-T Focus Group on Data Processing and Management to support IoT and Smart Cities & Communities (ITU-T FG-DPM)

Essential tasks
- Identify challenges in IoT and smart cities for DPM
- Identify key requirements and capabilities for DPM
- Promote the establishment of trust-based data management frameworks for IoT and SC&C
- Investigate the role of emerging technologies to support data management incl. blockchain
- Identify and address standards gaps and challenges

WG1 - Use Cases, Requirements and Applications/Services
WG2 - DPM Framework, Architectures and Core Components
WG3 - Data sharing, Interoperability and Blockchain
WG4 - Security, Privacy and Trust including Governance
WG5 - Data Economy, commercialization and monetization

1st meeting in July 2017 (SG20 is parent SG)
1st ITU Workshop on Data Processing and Management for IoT and Smart Cities & Communities: Brussels, Belgium, 19 Feb. 2018

Liaisons/interactions established with numerous SDOs, Fora, Alliances and projects
E.g. ISO, ETSI ISG CIM, BDVA, various H2020 projects
Ongoing studies in ITU-T FG-DPM

<table>
<thead>
<tr>
<th>FG-DPM Working Groups</th>
<th>Partial list of deliverables</th>
</tr>
</thead>
<tbody>
<tr>
<td>WG1</td>
<td>• D1.1 Use Cases Analysis and General Requirements for DPM</td>
</tr>
<tr>
<td>Use Cases, Requirements and Applications/Services</td>
<td>• D2.1 DPM Framework for Data-driven IoT and SC&C</td>
</tr>
<tr>
<td>WG2</td>
<td>• D2.2 DPM Functional Architectures</td>
</tr>
<tr>
<td>DPM Framework, Architectures and Core Components</td>
<td>• D2.3 Data Modeling and Formats Specification for DPM</td>
</tr>
<tr>
<td>WG3</td>
<td>• D3.1 Framework of Open/Private Data</td>
</tr>
<tr>
<td>Data sharing, Interoperability and Blockchain</td>
<td>• D3.2 Technical Enablers for Open Data Platform</td>
</tr>
<tr>
<td>WG4</td>
<td>• D3.3 Framework to support data interoperability in IoT environment</td>
</tr>
<tr>
<td>Security, Privacy and Trust including Governance</td>
<td>• D3.6 Blockchain-based Data Exchange and Sharing Technology</td>
</tr>
<tr>
<td>WG5</td>
<td>• D4.1 Framework of Security and Privacy in DPM</td>
</tr>
<tr>
<td>Data Economy, commercialization and monetization</td>
<td>• D4.5 Data Governance Framework for IoT and SC&C</td>
</tr>
<tr>
<td></td>
<td>• D5.1 Modeling of Data Economy for value creation and Stakeholders identification</td>
</tr>
<tr>
<td></td>
<td>• D5.2 Business models, commercialization and monetization to support data economy</td>
</tr>
<tr>
<td></td>
<td>• D5.3 Data economy impact assessment, policy and sustainability implications</td>
</tr>
<tr>
<td></td>
<td>• Cross-WG studies: DPM taxonomies and vocabularies, gap analysis, DPM standardization roadmap</td>
</tr>
</tbody>
</table>
“Use Cases Analysis and General Requirements for DPM” (FG-DPM D1.1): a key entry point for the whole FG-DPM work

• Objectives
 ▪ Identify from DPM perspective - per each use case - ecosystem’s actors and business roles, data characteristics, capabilities, requirements and other
 ▪ Facilitate comparison among different use cases (across single or multiple domains) to enable common DPM features to be identified/adopted, and facilitate single/cross-domain applications’ implementation
 ▪ Allow creation of new services at little extra cost
 ▪ Feed other FG-DPM deliverables (DPM framework, area-specific frameworks, others)

• Progress so far
 ▪ “Unified DPM Use Case template” developed and disseminated to numerous potential DPM use cases contributors (incl. SDOs, Alliances, EU H2020 projects)
 ▪ Numerous DPM use cases collected
 ▪ Comparison of DPM use cases started - identifying common/use case-specific requirements
 ▪ DPM capabilities’ global picture discussion initiated (WG1, WG2, others)
Data Economy, commercialization and monetization
(ongoing FG-DPM D5.1)

Data Core Activities

Data Support Activities

Data Laws, Regulations & Policies
Data Security & Privacy Related Services
ICT Connectivity & Infrastructure Services

Data laws, regulations and policies: formulation and enforcement of data related laws, regulations and policies

Data security and privacy services: provisioning of data related security and privacy services for implementing and enforcing data laws, regulations and policies.

ICT connectivity and infrastructure services: provisioning of ICT connectivity and infrastructure services for implementing data value chain activities

Interaction between FG-DPM WG5 (business perspective on DPM) and FG-DPM WG1/WG2 (technical perspective on DPM)
Y.SC-OpenData “Framework of Open Data in Smart Cities” (ITU-T SG20)

Open Data facilitates the advancement of Smart Cities

Functional architecture of Open Data in Smart Cities

- **Source Data Layer**
 - Traditional ICT System (DB, Text document, Streaming Data, Image, Video, …)
 - IoT Data Collection System

- **Open Data Integration Layer**
 - Anonymization Protection Capability
 - Metadata Management Capability
 - Catalog Management Capability
 - Streaming Data Processing Capability

- **Open Data Access Layer**
 - Portal Capability
 - Application Access Capability

- **Application Layer**
 - Application A
 - Application B
 - Application C
 - Application D
 - …

Fundamental requirements of Open Data in Smart Cities
- Access and utilization of Open Data in Smart Cities
- Integration and processing of Open Data in Smart Cities
- Security and privacy of Open Data in Smart Cities
- Laws and regulations related requirements
A very concrete example of standardization work item where H2020 projects (e.g. LSPs) can contribute